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Abstract

We use some ‘natural’ language operations, such as shuffle (scattered insertion) and scattered deletion to model
noisy channels, that is, nondeterministic processes transforming words to words. In this spirit, we also introduce
the operation of scattered substitution and derive the closure properties of the language families in the Chomsky
hierarchy under this operation. Moreover, we consider a certain type of language inequations involving language
operations and observe that, by varying the parameters of such an inequation, we can define families of codes such
as prefix and infix, as well as families of error-detecting languages. Our results on this type of inequations include
a characterization of the maximal solutions, which provides a uniform method for deciding whether a given regular
code of the type defined by the inequation is maximal.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Language operations, such as catenation, shuffle (scattered insertion) and scattered deletion, have been a
classical topic of study in formal language theory. In particular, the closure properties of language families
in the Chomsky hierarchy under such operations are one of the central themes in this theory[13,7]. More
recently, also the topic of language equations involving language operations other than catenation has
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been of interest[8,9] (see[2] for language equations involving the catenation operation). In this work,
we observe that certain language operations—in particular shuffle and scattered deletion—can be used to
model noisy channels (in the sense of[11]). In this spirit we introduce another ‘natural’ language operation,
the operation of scattered substitution, and derive the closure properties of the language families in the
Chomsky hierarchy under this operation. We also observe that a certain type of language inequations can
be used to define code-related properties of languages. More specifically, consider the inequation

X♦L ⊆ Xc with X ⊆ M, (*)

whereX is the unknown language,Xc is the complement ofX, L andM are fixed languages, and♦ is a
binary language operation. Depending on the choice of♦,L, andM, the solution set of such an inequation
could be the family of all prefix codes, hypercodes, infix codes, etc. (see[5] for such families of codes).
Moreover, the pair(♦, L) can be used to define a noisy channel, which we denote by[♦L�]. With this
interpretation, the solution set of the inequation is the set of all languages that are error-detecting for the
channel[♦L�]. Following certain ideas in[8,9] about language equations, we obtain a characterization of
the maximal solutions of the inequation(∗), when(∗) is of type (c)—see Section6. This yields a method
for deciding whether a given regular code of the type defined by the inequation is maximal. We note that
uniform methods for deciding code-related properties of regular languages have been considered in[6,4].
However, to our knowledge, there is no analogous uniform method for deciding the maximality property.

The paper is structured as follows. In the next section we provide the basic notation and background
about formal languages, binary relations, word operations, language equations and error-detection. In
Section 3 we give examples to demonstrate that certain code-related properties are definable via language
inequations of type(∗). For the case of error-detection properties we need the concept of noisy channel.
We show how to model certain channels using language operations in Section 4. In Section 5, we study
the closure properties of language families in the Chomsky hierarchy under the operations involved
in modelling channels with substitution errors. In Section 6 we point out the connection between error-
detecting languages and the solutions of the above inequation and establish basic results about the maximal
solutions of this inequation. When the inequation is of type (c) we obtain a necessary and sufficient
condition for whether a given solution is maximal—see Corollary6.7. In the last section we discuss
some special cases and applications of our results. In particular, we show that (i) for certain inequations
with finitely many maximal solutions there is a method for obtaining those solutions; (ii) the problem of
whether the inequation has a solution of at leastk elements, for some givenk, is NP-complete; (iii) there
are simple and efficient algorithms for deciding whether a given regular prefix code, or finite bifix code,
or finite infix code, or fixed-length 1-error-detecting code is maximal.

2. Definitions, notations and background

2.1. Alphabet, word, language, automaton, binary relation

An alphabetis a finite and nonempty set of symbols. In the sequel we shall use a fixed alphabet�. The
set of all words (over�) is denoted by�∗. This set includes theempty word�. The length of a wordw is
denoted by|w|. For a nonnegative integernand a wordw, we usewn to denote the word that consists ofn
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concatenated copies ofw. TheHamming distanceH(u, v) between two wordsuandvof the same length
is the number of corresponding positions in whichu andv differ. For example,H(abba, aaaa) = 2.

A languageL is a set of words, or equivalently a subset of�∗. A language is said to be�-free if it
does not contain the empty word. For a languageL, we writeL� to denoteL ∪ {�}. If n is a nonnegative
integer, we writeLn for the language consisting of all words of the formw1 · · ·wn such that eachwi

is in L. We also writeL∗ for the languageL0 ∪ L1 ∪ L2 ∪ · · · andL+ for the languageL∗ − {�}. The
notationLc represents the complement of the languageL; that is,Lc = �∗−L. For the classes of regular,
context-free, and context sensitive languages, we use the notations REG, CF and CS, respectively.

A nondeterministic finite automaton with� productions (or transitions), a�-NFAfor short, is a quintuple
A = (S,�, s0, F, P ) such thatSis the finite and nonempty set of states,s0 is the start state,F is the set of
final states, andP is the set of productions of the formsx → t , wheresandt are states inS, andx is either
a symbol in� or the empty word. If there is no production withx = �, the automaton is called anNFA.
If for every two productions of the formsx1 → t1 andsx2 → t2 of an NFA we have thatx1 �= x2 then
the automaton is called aDFA (deterministic finite automaton). The language accepted by the automaton
A is denoted byL(A). The automaton is calledtrim if every state is reachable from the start state and can
reach a final state inF (whenF �= ∅). Thesize|A| of the automatonA is the number|S| + |P |. Note that
the number|S| of states of a trim automaton is at most 1+ |P |; therefore, the size of such an automaton
is |A| = �(|P |).

A finite transducer(in standard form) is a sextupleT = (S,�,�′, s0, F, P ) such that�′ is the output
alphabet, the componentsS, s0, F are as in the case of�-NFAs, and the setP consists of productions of
the formsx → yt wheres and t are states inS, x ∈ � ∪ {�} andy ∈ �′ ∪ {�}. If x is nonempty for
every production then the transducer is called agsm(generalized sequential machine). If, in addition,
y is nonempty for every production then the transducer is called a�-free gsm. The relation realized by
the transducerT is denoted byR(T ). The concept of a trim transducer is the same as that in the case of
automata. The size|T | of the transducerT (in standard form) is|S| + |P |. Again, when the transducer is
trim its size is|T | = �(|P |).

A binary relation�, say, over� is a subset of�∗×�∗. Thedomainof �, denoted dom(�), is the set of all
wordsu such that(u, v) is in � for some wordv. We shall use the notation�(u) for the set{v | (u, v) ∈ �}.
This notation is extended to languagesL as follows:�(L) = ∪u∈L�(u). The symbol�−1 represents the
inverse of the relation�, which is equal to{(v, u) | (u, v) ∈ �}. Thecomposition�1 ◦ �2 of two binary
relations�1 and�2 is the binary relation{(u, v) | (u, z) ∈ �2 and(z, v) ∈ �1, for some wordz}. A relation
is calledrational if it can be realized by a finite transducer.

We refer the reader to[14] or [16] for details on automata and formal languages.

2.2. Binary word operations

A binary word operation is a mapping♦ : �∗×�∗ → 2�∗ , where 2�
∗

is the set of all subsets of�∗. The
domainof ♦, denoted dom(♦), is the set of all pairs(u, v) of words such that the setu♦v is not empty.
Theleft domainof♦ is dom1(♦) = {u : (u, v) ∈ dom(♦) for some wordv}. Similarly, theright domain
of♦ is dom2(♦) = {v : (u, v) ∈ dom(♦) for some wordu}. Theimageof♦ is im (♦) =⋃

u,v∈�∗ u♦v.
Thecharacteristic relationof ♦ is

C♦ = {(w, u, v) : w ∈ u♦v}.
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For any languagesXandY,X♦Y =⋃
u∈X,v∈Y u♦v. It should be noted that every subsetBof �∗×�∗×�∗

defines a unique binary word operation whose characteristic relation is exactlyB.

Definition 2.1 (Kari [8]). Let♦ be an operation. The left inverse♦l of ♦ is defined as

w ∈ (x♦v) iff x ∈ (w♦lv), for all v, x,w ∈ �∗,

and the right inverse♦r of ♦ is defined as

w ∈ (u♦y) iff y ∈ (u♦rw), for all u, y,w ∈ �∗.

Definition 2.2. Let ♦ be a binary word operation. The word operation♦′ defined byu♦′v = v♦u is
calledreversed♦.

It should be clear that, for every binary operation♦, the triple(w, u, v) is inC♦ if and only if (u,w, v)

is in C♦l if and only if (v, u,w) is in C♦r if and only if (w, v, u) is in C♦′ . If x andy are symbols in
{l, r,′ }, the notation♦xy represents the operation(♦x)y . Using the above observations, one can establish
identities between operations of the form♦xy . For example,♦ll = ♦rr = ♦′′ = ♦ and♦′l = ♦r ′ = ♦lr .

Next we list a few binary word operations together with their left and right inverses[7,8].
Catenation: 1 u · v = {uv}, with ·l = −→rq and·r = −→lq .
Left quotient: u −→lq v = {w} if u = vw, with−→l

lq = ·′ and−→r
lq = −→rq .

Right quotient: u −→rq v = {w} if u = wv, with−→l
rq = · and−→r

rq = −→lq .
Insertion: u←− v = {u1vu2 | u = u1u2}, with←−l = −→ and←−r =⇀↽′.
Deletion: u −→ v = {u1u2 | u = u1vu2}, with−→l =←− and−→r =⇀↽.
Dipolar deletion: u ⇀↽ v = {w | u = v1wv2, v = v1v2}, with ⇀↽l =←−′ and⇀↽r = −→.
Shuffle(or scattered insertion): u�v = {u1v1 · · · ukvkuk+1 | k�1, u = u1 · · · ukuk+1, v = v1 · · · vk},

with �l = � and�r = �′.
Scattered deletion: u�v = {u1 · · · ukuk+1 | k�1, u = u1v1 · · · ukvkuk+1, v = v1 · · · vk}, with�l =

� and�r = �.

2.3. Language equations

The process of solving language equations has much in common with the process of solving algebraic
equations. For example the equationX♦L = R is similar to the equationx + a = b, wherea, b are
constants. In both cases, the unknown left operand can be obtained from the result of the operation and the
known operand by using an “inverse” operation. In the case of addition, this role is played by subtraction.
In the case of a binary word operation, which usually is not commutative, the notion of left inverse has
to be utilized. Similarly, the notion of right-inverse will aid in solving equations of the typeL♦Y = R,
where the unknown is the right-operand. We recall now a result from[8] that uses the left and right inverse
operations to solve language equations.

1 We shall also writeuv for u · v.
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Theorem 2.3. LetL,R ⊆ �∗ be two languages and let♦ be a binary word operation. If the equation
X♦L = R (respectively, L♦Y = R) has a solution then the languageXmax= (Rc♦lL)c (respectively,
Ymax= (L♦rRc)c) is also a solution, namely one that includes all the other solutions to the equation.

For example consider the case of scattered deletion and shuffle. The fact that the left inverse of scattered
deletion is shuffle and viceversa helps us solve equations of the type

X�L = R, X � L = R.

By Theorem2.3, the maximal solutions to these equations, if they exist, areXmax= (Rc � L)c, respec-
tively, Xmax= (Rc�L)c. As REG is closed under scattered deletion[7] and shuffle[13], these maximal
solutions are regular and can be effectively constructed in caseR is regular. Note that the same languages
are also solutions to the inequationsX�L ⊆ R andX � L ⊆ R, respectively, as a consequence of the
following lemma, which can be shown using the same arguments as in the proof of Theorem2.3.

Lemma 2.4. If S is a solution toX♦L ⊆ R (respectively, L♦Y ⊆ R) then also(Rc♦lL)c (respectively,
(L♦rRc)c) is a solution, which includes S.

2.4. Channels and error-detection

We recall the concepts of channel and error-detection from[11]. A channel is a binary relation� that
is domain preserving, that is,� ⊆ �∗ × �∗ and(u, u) is in � for all u ∈ dom(�). The fact that(u, v) is in
� means that the wordv can be received whenu is transmitted via the channel�. If, moreover,u �= v we
say thatv can be received fromu with errors. The requirement that� is domain preserving ensures that
error-free communication via� is possible. A channel� is called rational if the relation� is rational.

A languageL is error-detecting for� if no word inL� can be received from a different word inL� via �.
More formally, a languageL iserror-detecting for a channel� iff for all wordsuandv in L�, if (u, v) ∈ �
thenu = v.

Remark 2.5. A language is error-detecting for� if and only if it is error-detecting for�−1.

Next we list a few channels involving substitution, insertion, and deletion (SID) errors—see[12] for
additional channels of this kind. We note that the subscript ‘s’ indicates scattered errors as opposed to
burst errors[12].

�s(m,∞): consists of all pairs(u, v) such thatv is obtained by deleting up tomsymbols fromu.
�s(m,∞): consists of all pairs(u, v) such thatv is obtained by inserting up tomsymbols inu.
�s(m,∞): consists of all pairs(u, v) such thatv is obtained by substituting up tomsymbols ofuwith

different alphabet symbols. Equivalently, this channel consists of all pairs(u, v) such that|u| = |v| and
the Hamming distanceH(u, v) is at mostm.
(� � �)s(m,∞): consists of all pairs(u, v) such thatv is obtained by performing a total of up tom

substitutions and deletions inu.
(� � �)s(m,∞): consists of all pairs(u, v) such thatv is obtained by performing a total of up tom

substitutions and insertions inu.
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3. Code-related properties as solutions to language inequations

A languageK is said to be a (uniquely decodable) code, if every wordw inK∗ has a unique factorization
overK, that is, there is only one sequence of wordsw1, . . . , wn in K, for somen�0, such thatw =
w1 · · ·wn. A language property, sayP, can be viewed as the set of all languages having that property.
Using this interpretation, many natural code-related properties can be viewed as solution sets to language
inequations involving binary word operations. We provide in the following several examples. The reader
is referred to[15] or [5], for instance, for details on codes.

Example 3.1. A languageK is a prefix (respectively, suffix) code ifux ∈ K (respectively,xu ∈ K)
implies x = �, for all wordsu ∈ K andx ∈ �∗. Let P be the “prefix-code” property. ThenP is the
solution set of(X −→rq �+) ⊆ Xc with the constraintX ⊆ �+. Similarly the “suffix-code” property is
the solution set of(X −→lq �+) ⊆ Xc with X ⊆ �+.

Example 3.2. A languageK is an infix code ifxuy ∈ K impliesx = y = �, for all wordsu ∈ K and
x, y ∈ �∗. It is an outfix code ifu1u2 ∈ K andu1xu2 ∈ K impliesx = �, for all wordsu1, u2, x ∈ �∗.
LetP be the “infix-code” property. ThenP is the solution set of(X ⇀↽ �+) ⊆ Xc withX ⊆ �+. Similarly,
the “outfix-code” property is the solution set of(X −→ �+) ⊆ Xc with X ⊆ �+.

Example 3.3. A languageK is a hypercode ifu ∈ v � �∗ impliesu = v, for all wordsu, v ∈ K. The
“hypercode” property is exactly the solution set of(X � �+) ⊆ Xc with X ⊆ �+.

The next examples show how certain “error-detection” properties can also be modelled in terms of
solution sets to language equations. Let� be a channel. We writeP� for the “�-error-detecting language”
property, that isP� is the class of all languages that are error-detecting for�.

Example 3.4. Let � be the channel�s(m,∞), i.e., (u, v) ∈ � iff v is obtained fromu by at mostm
deletions. ThenP�, the set of all languages which are error-detecting for�, is exactly the set of solutions
of X��(�

⋃
. . .

⋃
�m) ⊆ Xc

�. Indeed, letX ∈ P�. Considerz ∈ x�y with x ∈ X� andy ∈ �+ with
|y|�m. We want to showz �∈ X�. As z is obtained fromx using at least 1 and at mostm scattered
deletions, it follows that(x, z) is in � andx �= z. Hencez �∈ X�. Conversely, supposeX satisfies the
inequation butX �∈ P�. Then there are two different wordsxandz in X� such that(x, z) ∈ �. This implies
z ∈ X��(�

⋃
. . .

⋃
�m) and, therefore,z ∈ Xc

�—a contradiction. Hence,X ∈ P�.

Example 3.5. Let� be an insertion channel� = �s(m,∞), i.e.,(u, v) ∈ � iff v is obtained fromuby at most
m insertions. We have thatP�, the set of all languages which are error-detecting for�, is exactly the set of
solutions ofX�(� ⋃

. . .
⋃

�m) ⊆ Xc, or equivalently, the set of solutions ofX��(� ⋃
. . .

⋃
�m) ⊆ Xc

�.

4. Using word operations to model channels

Let♦ be a binary word operation andL be a language. The pair(♦, L) plays an important role in the
sequel.
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Definition 4.1. Let L be a language and let♦ be a binary word operation.
(i) The binary relation[♦L] consists of all pairs(u, v) of words such thatv ∈ u♦L.
(ii) The operation♦ is calledL-rational if [♦L] is a rational relation.

Recall that, for a binary operation� ⊆ �∗ ×�∗ and a wordu ∈ �∗, we defined�(u) = {v | (u, v) ∈ �}.

Lemma 4.2. (i) For every binary operation♦ and languages K and L, one has that[♦L](K) = K♦L.
(ii) For every binary operation♦ and languageL, [♦lL] = [♦L]−1.

(iii) For every binary relation�, there is a binary operation♦ and a language L such that� = [♦L].

Proof. (i) Follows easily from the above definition.
(ii) We have(u, v) ∈ [♦lL] iff v ∈ u♦lL iff u ∈ v♦L iff (v, u) ∈ [♦L] iff (u, v) ∈ [♦L]−1.
(iii) There are many ways to define♦ andL from �. For example, consider the relationB = {(v, u, z) :

z ∈ �∗ and(u, v) ∈ �}. Then � = [♦�∗], where♦ is the binary operation whose characteristic relation
isB. �

From the examples in Section 3 we understand that there is a close connection between channels and
pairs of the form(♦, L). For example, the channel�s(m,∞) is equal to[�(�0 ∪ · · · ∪ �m)] and the
channel�s(m,∞) is equal to[�(�0∪ · · · ∪�m)]. As� is the left inverse of�, the above lemma implies
that the channel�s(m,∞) is the inverse of the channel�s(m,∞). By Remark2.5, this in turn implies that
a language is error-detecting for�s(m,∞) if and only if it is error-detecting for�s(m,∞).

Next we consider two natural binary word operations related to channels with substitution errors.

Definition 4.3. If u, v ∈ �∗ then we define thesubstitution in u by vasu��v = {u1v1u2v2 . . . ukvkuk+1 |
k�0, u = u1a1u2a2 . . . ukakuk+1, v = v1v2 . . . vk, ai, vi ∈ �,1�i�k, ai �= vi,∀i,1�i�k}.

The casek = 0 corresponds tov = � when no substitution is performed.

Example 4.4. Let� = �s(m,∞).ThenP� is the solution set of the inequationX��(� ⋃
. . .

⋃
�m) ⊆ Xc.

Moreover, the channel�s(m,∞) is equal to[��(�0 ∪ · · · ∪ �m)].

Definition 4.5. If u, v ∈ �∗ then we define thesubstitution in u of vasu�v = {u1a1u2a2 . . . ukakuk+1 |
k�0, u = u1v1u2v2 . . . ukvkuk+1, v = v1v2 . . . vk, ai, vi ∈ �,1�i�k, ai �= vi,∀i,1�i�k}.

Lemma 4.6. The operation�� is the left-inverse of�.

Proof.Letw ∈ u��v. Thenu = u1a1u2a2 . . . ukakuk+1, v = v1v2 . . . vk andw = u1v1u2v2 . . . ukvkuk+1
for someui ∈ �∗, ai, vi ∈ �, ai �= vi , 1�i�k. This meansu ∈ w�v.

Conversely, letu ∈ (w�v). Thenw = w1v1w2v2 · · ·wkvkwk+1, v = v1v2 . . . vk andu is equal to
w1a1w2a2 · · ·wkakwk+1 for somewi ∈ �∗, ai, vi ∈ �, ai �= vi , 1�i�k. This meansw ∈ (u��v). �

By Theorem2.3 the equationsX��L = R, X�L = R have as maximal solutions (if any)Xmax =
(Rc�L)c, respectively,Ymax= (Rc��L)c.
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The operations� and�� have a closer relation when the right operand is alength-closedlanguage. A
languageL is length-closed if, for everyn�0, when a word of lengthn is in L then all words of lengthn
are inL. An example of such a language is�0 ∪ · · · ∪ �m.

Remark 4.7. For every length-closed languageL, [�L] = [��L]. Therefore,�s(m,∞) = [�(�0∪ · · · ∪
�m)].

Next we define the right inverses of�� and�.

Definition 4.8. For any wordsu, v ∈ �∗ of the same length and with Hamming distanceH(u, v) = k,
for some nonnegative integerk, u�v is the set of words

b1b2 . . . bk, bi ∈ �,1�i�k,

such thatu = u1a1 · · · ukakuk+1, v = u1b1 · · · ukbkuk+1 and, for alli, 1�i�k, ai �= bi .

In other words,u�v consists of the wordb1b2 · · · bk whereb1, b2, . . . , bk are the symbols ofv that are
different from the corresponding symbols ofu. It should be clear that the setu�v is empty whenu andv
have different lengths.

Example 4.9. If L1 = {anbn|n�1} andL2 = {bm|m�1}, thenL1�L2 = b∗. (We can only perform
anbn�b2n which givesbn.) On the other hand,L2�L1 = a∗. Hence, the operation� is not commutative.

Example 4.10. In general, ifL ⊆ �∗ anda ∈ � thenL�a∗ ⊆ a∗, L�a∗ = {a|w|−|w|a | w ∈ L}, where
|w|a is the number ofa’s occurring in the wordw.

Note that� is the right inverse of��, and the reversed� is the right inverse of�. Consequently, by
Theorem2.3, the solutions to the equationsL��Y = R andL�Y = R (if any) areYmax = (L�Rc)c,
respectively,Ymax= (Rc�L)c.

To model more complex channels we need the concept of composition of two word operations. We
shall assume that the symbol ‘;’ is not in the alphabet�.

Definition 4.11. Given two binary operations♦1 and♦2, define the binary operations(♦1♦2) and
(♦1;♦2) as follows:

For all wordsu,w, v ∈ �∗ w ∈ u(♦1♦2)v if and only ifw ∈ (u♦1v1)♦2v2 for some wordsv1 andv2
with v = v1v2. For all wordsu,w ∈ �∗ andv ∈ �∗;�∗,w ∈ u(♦1;♦2)v if and only ifw ∈ (u♦1v1)♦2v2
for some wordsv1 andv2 with v = v1; v2.

Next we provide some observations concerning the two composition operations.
A languageL is commutative, if xy ∈ L⇔ yx ∈ L for all wordsx andy.

Proposition 4.12. LetL,L1, L2 be languages over�. The following statements hold true.
(i) (L♦1L1)♦2L2 = L(♦1;♦2)L1;L2.
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(ii) [(♦1;♦2)L1;L2] = [♦2L2] ◦ [♦1L1].
(iii) [(♦1;♦2)

lL1;L2] = [(♦l
2;♦l

1)L2;L1].
(iv) If L is commutative then[(♦1♦2)

lL] = [(♦l
2♦l

1)L].

Proof. (i) Follows easily from the definition of composition.
(ii) We have that(u, v) ∈ [(♦1;♦2)L1;L2] iff v ∈ (u♦1L1)♦2L2 iff there is a wordz such that

z ∈ u♦1L1 andv ∈ z♦2L2 iff there is a wordz such that(u, z) ∈ [♦1L1] and (z, v) ∈ [♦2L2] iff
(u, v) ∈ [♦2L2] ◦ [♦1L1].

(iii) We use part (i) and Lemma4.2: [(♦1;♦2)
lL1;L2] = [(♦1;♦2)L1;L2]−1 = [♦1L1]−1 ◦

[♦2L2]−1 = [♦l
1L1] ◦ [♦l

2L2] = [(♦l
2;♦l

1)L2;L1]
(iv) Similar to the above. �

One can verify that the channel(�� �)s(m,∞) is equal to[(���)(�0 ∪ · · · ∪ �m)], and the channel
(�� �)s(m,∞) is equal to[(��)(�0 ∪ · · · ∪ �m)]. Hence, the following result holds.

Corollary 4.13. The inverse of the channel(�� �)s(m,∞) is (�� �)s(m,∞); therefore, a language is
error-detecting for(�� �)s(m,∞) if and only if it is error-detecting for(�� �)s(m,∞).

We note that analogous results for the property of error-correction have been obtained in[10] using
different tools. Now let�1 = �s(m1,∞) ⊕ �s(m2,∞) be the channel consisting of all pairs(u, v)
such thatv is obtained fromu using at mostm2 deletions and at mostm1 substitutions. Let�2 =
�s(m1,∞)⊕ �s(m2,∞) be the channel consisting of all pairs(u, v) such thatv is obtained fromu using
at mostm2 insertions and at mostm1 substitutions. Then, it follows that

�1 = [(�; ��)(�0 ∪ · · · ∪ �m2); (�0 ∪ · · · ∪ �m1)],

�2 = [(�;�)(�0 ∪ · · · ∪ �m1); (�0 ∪ · · · ∪ �m2)].

Corollary 4.14. The inverse of the channel�s(m1,∞) ⊕ �s(m2,∞) is the channel�s(m1,∞) ⊕ �s
(m2,∞); therefore, a language is error-detecting for the channel�s(m1,∞) ⊕�s(m2,∞) if and only if
it is error-detecting for�s(m1,∞)⊕ �s(m2,∞).

5. Closure properties of substitution operations

The closure properties of language families in the Chomsky hierarchy under the operations of scattered
insertion and deletion were first studied in[7]. In this section we investigate such closure properties for
the scattered substitution operations, namely��,�,�.

Proposition 5.1. If L and R are languages over the alphabet�, R a regular one, L�R is the image of L
through a�-free gsm. Moreover, the gsm realizes the relation[�R].
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Proof. LetA = (S,�, s0, F, P ) be an NFA that recognizes a languageRover�. Construct the following
gsmg = (�,�, S, s0, F, P ′) where

P ′ = {sa→ as|s ∈ S, a ∈ �} ∪ {sa→ bs′|sa→ s′ ∈ P, a �= b}.
It is clear thatg(u1v1 · · · ukvkuk+1) = {u1a1 · · · ukakuk+1 | v = v1 · · · vk ∈ R and ai �= vi} and
thereforeg(L) = L�R for any languageL ⊆ �+. Moreover, it follows that(u, u′) is in [�R] if and only
if u′ ∈ g(u), for all wordsu andu′. �

Corollary 5.2. REG and CF are closed under� with regular languages.

Proposition 5.3. There exist two linear languagesL1, L2 such thatL1�L2 is not context-free.

Proof. Let � = {a, b, c, d, f,$} and consider the two context-free languages over�

L1 = {an(bc)n$(df )m|n,m�1},
L2 = {cndn|n�1}.

Then

(L1�L2) ∩ a∗b∗$f ∗ = {anb2n$f 2n|n�1}
As CF is closed under intersection with regular languages it follows thatL1�L2 is not a context-free
language. �

Corollary 5.4. CF is not closed under�.

Proposition 5.5. CS is closed under�.

Proof. LetL1, L2 be two context-sensitive languages over� and let�′ = {a′| a ∈ �}, �′′ = {a′′| a ∈ �}.
Consider the gsmg = (S,�,�∪�′, s0, F, P ), withS = {s0} = F ,P = {s0a→ as0, s0a→ a′s0|a ∈ �},
that transforms some letters in their primed versions. Consider now the morphismsh : �→ �′′, h(a) =
a′′, a ∈ �, andh′ : � ∪ �′ ∪ �′′, h′(a) = a, h′(a′) = a′, h′(a′′) = �.

We claim thatL1�L2 = g′{h′[[g(L1) � h(L2)] ∩ [⋃a∈� �∗a′a′′�∗]∗]} whereg′ is the gsmg′ =
(S′,�∪�′,�, s′, F ′, P ′) andS′ = {s′} = F ′, P ′ = {s′a→ as′|a ∈ �} ∪ {s′a′ → bs′|a �= b, a, b ∈ �}.

Indeed, given a wordu = u1v1u2v2 . . . ukvkuk+1 ∈ L1 andv = v1v2 . . . vk ∈ L2, vi ∈ �, ui ∈
�∗,1�i�k,

[g(u)� h(v)] ∩ [
⋃

a∈�

�∗a′a′′�∗]∗

producesu1v
′
1v
′′
1u2v

′
2v
′′
2 . . . ukv

′
kv
′′
k uk+1.

The intersection with (
⋃

a∈� �∗a′a′′�∗)∗ ensures that only wordsg(u) andh(v), wherev is a sub-
word of u, are shuffled, and only words where a primed letter is followed by an identical double
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primed letter are kept. Applyingh′ to u1v
′
1v
′′
1u2v

′
2v
′′
2 . . . ukv

′
kv
′′
k uk+1 erases the double primed letters

producingu1v
′
1u2v

′
2 . . . ukv

′
kuk+1, whileg′ replaces every primed letter with a different one, resulting in

u1a1u2a2 . . . ukakuk+1 ∈ u�v, asai �= vi,1�i�k.
A morphismh is termed ak-linear erasing with respect toL iff, for eachw ∈ L, |w|�k|h(w)|. Note

thath′ is a 2-linear erasing with respect to the language it is applied to, as it erases at most half of each
word. The proposition now follows as CS is closed underk-linear erasing as well as all the other operators
involved. �

Proposition 5.6. If L1, L2 ⊆ �∗, L2 regular, thenL1��L2 is the image ofL1 through a�-free gsm.
Moreover, the gsm realizes the relation[��L2].

Proof. We have thatL1��L2 = [��L2](L1) = [�lL2](L1) = [�L2]−1(L1) = g−1(L1), whereg is the
gsm realizing[�L2]—see Proposition5.1. The claim follows when we recall thatg−1 is obtained from
g by simply replacing every productionsa→ bt of gwith the productionsb→ at [17]. �

Corollary 5.7. REG, CF and CS are closed under�� with regular languages.

Proposition 5.8. CF is not closed under��.

Proof. Use exactly the same languagesL1 andL2 as in Proposition5.3 for the operation� and the
language

(L1��L2) ∩ a∗c∗$d∗ = {anc2n$d2n | n ≥ 1}. �

Proposition 5.9. CS is closed under��.

Proof. LetL1, L2 be two context-sensitive languages over� and let�′ = {a′|a ∈ �}, �′′ = {a′′|a ∈ �}.
Construct the gsmg = (S,�,� ∪ �′, s0, F, P ) whereS = {s0}, F = {s0}, P = {sa → as|a ∈

�} ∪ {sa → a′s|a ∈ �}. The nonerasing gsmg nondeterministically changes some letters into their
primed versions.

Consider now the morphismh : �→ �′′, h(a) = a′′, a ∈ �, and the morphismh′ : � ∪ �′ ∪ �′′ → �
defined ash′(a) = a, h′(a′) = �, h′(a′′) = a, a ∈ �.

We claim thatL1��L2 = h′[[g(L1)� h(L2)] ∩ [⋃a,b∈�,a �=b(�∗a′b′′�∗)]∗].
Indeed, let us consider a wordu = u1a1u2a2 . . . ukakuk+1 ∈ L1 andv = v1v2 . . . vk ∈ L2, ai �=

vi,1�i�k.
We have that

(g(u)� h(v)) ∩ [
⋃

a,b∈�,a �=b
�∗a′b′′�]∗

produces words of the formu1a
′
1v
′′
1u2a

′
2v
′′
2 . . . uka

′
kv
′′
k uk+1.
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The intersection with[⋃a,b∈�,a �=b �∗a′b′′�∗]∗ ensures that only those wordsg(u) andh(v) are shuffled
where each letter ofv is different from a letter inu, and only those words are kept from the shuffle in
which the letters inh(u) and their “different” counterparts are adjacent. The morphismh′ afterwards
erases all the primed letters and transforms the double primed letters into ordinary ones, resulting in
u1v1u2v2 . . . ukvkuk+1 ∈ u��v.

Note thath′ is a 2-linear erasing with respect to the language it is applied to, as it erases at most half
of each word.

As CS is closed under linear erasing homomorphisms, intersection with regular languages, shuffle, it
follows it is closed also under��. �

Proposition 5.10. If L1, L2 ⊆ �∗, L2 regular, then there exists a gsm g with erasing such thatg(L1) =
L1�L2.Moreover, the gsm realizes the relation[�L2].

Proof. Let L2 be a regular language,A = (S,�, s0, F, P ) be a finite automaton,L(A) = L2. Construct
the gsmg = (S,�,�, s0, F, P )whereP ′ = {sa→ s′|sa→ s′ ∈ P }∪{sa→ bs′|sb→ s′ ∈ P, b �= a}.

Theng(L1) = L1�L2. Indeed, consideru = u1a1 . . . ukakuk+1 ∈ L1, v = u1b1u2b2 . . . ukbkuk+1,

ai �= bi,1�i�k.
The gsmg applied tou works as follows. Rules of the typesa → s′ ∈ P erase subwordsui that are

common betweenu andv. Rulessa → bs′ wheresb→ s′ ∈ P, b �= a read the lettersawhere wordsu
andv differ and replace them with the corresponding letters inv.

The fact that the set of final states isF, the set of final states ofA, ensures that only wordsw ∈ u�v, v ∈
L2 reach a final state. Moreover, it is evident thatg realizes the relation[�L2]. �

Corollary 5.11. CF, REG are closed under� with regular languages.

Proof. It follows as REG, CF are closed under gsm mappings.�

Proposition 5.12.CS is not closed under� with regular languages.

Proof. LetL be a recursively enumerable language over� and leta, b be different symbols not in�. Then,
[14, p. 89]there exists a CS languageL1 such that (i)L1 consists of words of the formaibw, i�0, w ∈ L,
and (ii) for everyw ∈ L, there is ani�0 such thataibw ∈ L1.

Let �′ = {c′| c ∈ �} and�′′ = {c′′| c ∈ �}. Consider now the morphismh on � ∪ {a, b} defined by
h(a) = a, h(b) = b, h(c) = cc′ for all c ∈ �.

We claim thath1(L) = K, where

K = [h(L1)�a∗b(
⋃

c∈�

cc′′)∗] ∩ (�′′)∗

andh1 : � −→ �′′ is the morphism defined ash1(c) = c′′ for all c ∈ �. We leave it to the reader to verify
that every word inh1(L) also belongs toK. Now take a wordw ∈ K. Then there exist wordsu ∈ h(L1),
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v ∈ a∗b(
⋃

c∈� cc′′)∗ such thatw ∈ u�v. The wordsu, v are of the formu = aiba1a
′
1a2a

′
2 . . . aka

′
k

respectivelyv = ajbb1b
′′
1b2b

′′
2 . . . bmb

′′
m for somei, j,m, k�0.

If i �= j thenwwould contain lettersa or bwhich contradictsw ∈ (�′′)∗. Consequently,i = j . As |u|
=|v|, it follows thatm = k.

If there would exist 1� l�k with al �= bl then the wordw would contain the letterbl ∈ � which
contradictsw ∈ (�′′)∗. Consequently, for all 1� l�k, al = bl . We can easily see now that, following
these considerations,w = b′′1b′′2 . . . b′′k with b1b2 . . . bk ∈ L, and the claim follows.

It follows then that the class CS is not closed under�with regular languages, as this class is closed under
nonerasing morphisms, intersection with regular languages and, ifL is a noncontext-sensitive language
h1(L) will have the same property. (Ifh1(L) were context-sensitive thenL, which equals the image of
h1(L) through a nonerasing morphism that transforms all double primed letters into normal ones, would
also be context-sensitive.)�

Proposition 5.13. The family CF is not closed under�.

Proof. Let � = {a, b, c, e, f, g, x, y, z} and consider the languages

L1 = {(ax)i(by)i(cz)k| i, k�0}, L2 = {(ex)l(fy)m(gz)m| l, m�0}.
Then[(ax)i(by)i(cz)k�(ex)l(fy)m(gz)m] ∩ e∗f ∗g∗ = {eif igi |i�0} which is not context-free. �

6. Error-detection and the inequationX♦L ⊆ Xc with X ⊆ M

The examples provided in Sections 3 and 4 reveal the following pattern: many natural code-related
properties can be reduced to the property of error-detection by varying the channel involved. At the same
time, for many channels the property of error-detection can be studied via the inequation

X♦L ⊆ Xc with X ⊆ M (∗)
by varying the operator♦ and the languagesL andM. More specifically, consider the case where the pair
(♦, L) satisfies the condition

For allu ∈ �∗, u �∈ u♦L andu ∈ u♦� C(♦, L).
When condition C(♦, L) is satisfied, the relation[♦L�] is a channel and it follows that a language is

error-detecting for[♦L�] if and only if it is a solution of(∗) with M = �∗. With this interpretation of the
inequation(∗), we have that a language is a prefix code (respectively, suffix, infix, outfix, hypercode) if
and only if it is error-detecting for the channel[−→rq �∗] (respectively,[−→′

lq �∗], [⇀↽ �∗], [−→ �∗],
[��∗]).

Definition 6.1. Inequation(∗) is of type(c), if condition C(♦, L) is satisfied.

In this section, we provide some observations and obtain general statements about the solutions of the
inequation(∗) which are meaningful to error-detection, hence also to the code properties reducible to
the error-detection property. In particular, in Corollary6.7 we obtain a characterization of the maximal
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solutions of a type (c) inequation, which yields a method for deciding whether a given regular solution
is maximal—see Proposition6.14and the discussion following that proposition. A consequence of this
result is that one can use the same method to decide whether a given regular prefix code, or suffix code,
or infix code, or error-detecting language is maximal because each of these code properties is definable
via an inequation of type (c), as shown in Section3.

An important concept in our considerations is the residue of a solution.

Definition 6.2. LetSbe a solution of(∗). Theresidueof S is the languageM − (S ∪ S♦L ∪ S♦lL).

Proposition 6.3. (i) If S is a solution of(∗) then every subset of S is also a solution of(∗).
(ii) Every solution of(∗) is included in a maximal solution of(∗).
(iii) If the equation(∗) is of type(c) then{w} is a solution of(∗), for every word w in M.

Proof. (i) Let S1 be a subset ofSand letw be a word inS1♦L. As S1♦L is a subset ofS♦L, it follows
thatw ∈ Sc, hence also,w ∈ Sc1.

(ii) Let P be the solution set of(∗) and letS = {Si : i ∈ I } be any totally ordered subset ofP. We show
that the upper bound

⋃
i∈I Si of S is a solution of(∗) as well; then the claim follows by Zorn’s lemma.

Let z ∈ s♦u for somes ∈⋃
Si andu ∈ L. Thens ∈ Sj , for somej ∈ I . If alsoz ∈⋃

Si thenz ∈ Si for
somei ∈ I . Let k = max{i, j}. Thenz, x ∈ Sk and(Sk♦L)⋂ Sk �= ∅, which contradicts the fact thatSk
is a solution of(∗).

(iii) Obvious. �

The following is based on the proof of Theorem2.3.

Lemma 6.4. For any languagesX, Y,Z and for any binary operator♦,

X♦Y ⊆ Z ⇔ X ⊆ (Zc♦lY )c ⇔ Y ⊆ (X♦rZc)c.

Proof. We consider only the first equivalence: “⇒” Let x ∈ X, but supposex ∈ Zc♦lY ; thenx ∈ t♦lY

for somet ∈ Zc, which impliest ∈ x♦Y andt ∈ X♦Y ⊆ Z; a contradiction.
“⇐” Let z ∈ x♦Y , for somex ∈ X, but supposez ∈ Zc. Thenx ∈ z♦lY ⊆ Zc♦lY . As (Zc♦lY ) ⊆

Xc, x ∈ Xc; a contradiction. �

Corollary 6.5. (i) Eq.(∗) is equivalent to
X♦rX ⊆ Lc with X ⊆ M (∗∗)

which in turn is equivalent to

X♦rX ⊆ dom2(♦)− L with X ⊆ M.

(ii) A language is a solution of(∗) if and only if it is a solution ofX♦lL ⊆ Xc withX ⊆ M.
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Proof. X♦L ⊆ Xc is equivalent toL ⊆ (X♦rX)c which is equivalent toX♦rX ⊆ Lc. As im(♦r ) =
dom2(♦),X♦rX ⊆ dom2(♦) and the claim follows. The second part can be shown analogously.�

Proposition 6.6. Let S be a solution of(∗).
(i) If the residue of S is empty, then S is a maximal solution of(∗).

(ii) If (∗) is of type(c) and the solution S is maximal, then the residue of S is empty.
(iii) If (∗) is of type(c), thenS ∪ {w} is a solution of(∗) for every word w in the residue of S.

Proof. (i) AssumeM ⊆ S ∪ S♦L ∪ S♦lL, but suppose there isw ∈ M − S such thatT = S ∪ {w} is a
solution of(∗). Asw is not inS, at least one of the following holds.

(a)w is in S♦L. In this case,w ∈ z♦L for somez ∈ S, which impliesz ∈ w♦lL ⇒ z ∈ T♦lL ⇒
z ∈ T c ⇒ z �∈ S, a contradiction.

(b)w is inS♦lL. In this case,w ∈ z♦lL for somez ∈ S, which impliesz ∈ T♦L⇒ z ∈ T c ⇒ z �∈ S,
a contradiction.

Hence,Smust be maximal.
(ii) This is a consequence of (iii), which we prove next.
(iii) Assume(∗) is of type (c) and consider any wordw ∈ M such thatw is not inS ∪ S♦L ∪ S♦lL.

Let T = S ∪ {w}. We show thatT♦L ⊆ T c. Let z ∈ T♦L. We consider two cases.
(a) z ∈ S♦L. AsS is a solution of(∗), z �∈ S. Also, if z = w thenw ∈ S♦L, which contradicts our

choice ofw. Hence,z �∈ S ∪ {w}.
(b) z ∈ w♦L. Thenw ∈ z♦lL. If z ∈ S thenw ∈ S♦lL, which is impossible again. Hence,z �∈ S. If

z = w thenw ∈ w♦L, which contradicts condition (c). Hence,z �= w. It follows again thatz �∈ T . �

Corollary 6.7. Let S be a solution to an inequation of type(c).Then S ismaximal if and only if the residue
of S is empty.

Corollary 6.8. If S is a solution of the equationX♦L = M −X, then S is a maximal solution of(∗).

Proposition 6.9. If S is a solution of the inequationX♦X ⊆ R with X ⊆ M, then also each of the
languages

M ∩ (Rc♦lS)c ∩ ((Rc♦lS)c♦rRc)c

and

M ∩ (S♦rRc)c ∩ (Rc♦l(S♦rRc)c)c

is a solution, which includes S.

Proof. AssumeS is a solution of the given inequation and letP be the language(Rc♦lS)c. As S is a
solution ofX♦S ⊆ R, one has that alsoP is a solution which includesS. Hence,P♦S ⊆ R. Now this
implies thatS is a solution of the inequationP♦Y ⊆ R; therefore, also the language(P♦rRc)c, call it
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Q, is a solution which includesS. Hence,P♦Q ⊆ R and, as(P ∩Q)♦(P ∩Q) is a subset ofP♦Q,
it follows that the languageP ∩Q satisfies the inequationX♦X ⊆ R. As every subset ofP ∩Q also
satisfies this inequation, we have thatM ∩P ∩Q is a solution ofX♦X ⊆ R with X ⊆ M. The statement
about the second language can be shown analogously.�

Definition 6.10. Let L be a language. The set ofleft (respectively, right) quotients of L with respect to♦
is the set of languages of the formL♦lW (respectively,W♦rL), whereW is a subset of�∗.

Using the fact thatA∩Bc = A−B, for any languagesAandB, Proposition6.9implies the following,
where an expression of the formM − A− B is shorthand for(M − A)− B.

Corollary 6.11. If S is a solution of the inequationX♦X ⊆ R withX ⊆ M then there is a left quotient
Pl and a right quotientPr ofRc with respect to♦ such that each of the languagesM − Pl − (P c

l ♦rRc)

andM − Pr − (Rc♦lP c
r ) is also a solution which includes S.

Using the above results and the fact that♦rl = ♦l′ , for all binary operations♦, also the following
holds true.

Corollary 6.12. Every maximal solution of(∗) is of the formM − Pl − (P c
l ♦L) and of the formM −

Pr − (P c
r ♦lL), wherePl andPr are left and right, respectively, quotients of L with respect to♦r .

We are interested in algorithms whose input involves equations of the form(∗). More specifically, we
shall assume that(∗) is such that♦ is L-rational andM is regular. In this case, the equation is given
effectively by a finite transducer realizing[♦L] and a finite automaton acceptingM.

The following result provides a uniform polynomial time algorithm for deciding properties of regular
languages that are definable via an equation of the form(∗). For the proof of this and other results
involving constructions and sizes of automata and transducers, we shall use the following notation—see
also[17,11].
Notation: LetA andB be two trim�-NFAs and letT be a trim transducer (in standard form).
• A ∩ B is a trim�-NFA of sizeO(|A||B|) accepting the languageL(A) ∩ L(B).
• A ∪ B is a trim�-NFA of sizeO(|A| + |B|) accepting the languageL(A) ∪ L(B).
• If AandBare DFAs thenA&B is a trim DFA of sizeO(|A||B|) accepting the languageL(A)∪L(B).
• If A is a DFA thenAc is a trim DFA of sizeO(|A|) accepting the languageL(A)c.
• AT is a trim�-NFA accepting the languageR(T )(L(A)) = {z ∈ �∗ | (w, z) ∈ R(T ), w ∈ L(A)}.
• T −1 is a trim transducer of sizeO(|T |) realizing the relationR(T )−1.

Proposition 6.13. The following problem is decidable in time:

O(|A|2|T | + |A||B|).
Input: A trim �-NFA A, a DFA B, and a trim transducer T(in standard form) realizing [♦K], for some
binary operation♦ and language K.
Output: Y/N depending on whetherL(A) is a solution ofX♦K ⊆ Xc withX ⊆ L(B).
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Proof.Testing whetherL(A) ⊆ L(B) is equivalent to testing whetherL(A)∩L(B)c = ∅. This is possible
when we construct the automatonA ∩ Bc of sizeO(|A||B|), and test whether there is a path from the
start state to a final state, which takes time linear with respect to the graph of the automaton using depth
first search, for instance.

Now consider the problem of deciding whetherL(A)♦K is a subset ofL(A)c. By Lemma4.2, this
is equivalent to testing whether[♦K](L(A)) ⊆ L(A)c. As the relation[♦K] is realized byT, one has
that [♦K](L(A)) = L(AT ). Hence, the problem is whetherL(AT ) ∩ L(A) is empty. As before, one
constructs the automatonAT ∩A of sizeO(|A|2|T |) and tests whether there is a path from the start state
to a final state. �

The assumption thatB is a DFA as opposed to a�-NFA is essential as, otherwise, computing the
complement of a�-NFA requires to convert it to a DFA, which in general would be of exponential size.
In practice, however, the automatonB and possibly the transducerT are fixed and, therefore, not part of
the input. In such cases the algorithm would require timeO(|A|2|T |), or simplyO(|A|2) whenT is fixed.

Proposition 6.14. The following problem is computable:
Input: A �-NFA A, a �-NFA B, and a transducer T realizing[♦K], for some binary operation♦ and
language K, such thatL(A) is a solution ofX♦K ⊆ Xc withX ⊆ L(B).
Output: A �-NFA accepting the residue ofL(A).

Proof. Consider the language

W = L(A) ∪ L(A)♦K ∪ L(A)♦lK.

By Lemma4.2,W is equal toL(A) ∪ [♦K](L(A)) ∪ [♦K]−1(L(A)). As T realizes the relation[♦K]
andT −1 realizes the relation[♦K]−1, the problem can be solved if we first construct the�-NFA C =
A∪AT ∪AT −1 accepting the languageW, and then construct the�-NFA B ∩Cc accepting the language
L(B)−W , which is equal to the residue ofL(A). �

A consequence of the above is that one can decide whether the given solutionL(A) is maximal by
testing whether the residue ofL(A) is empty, provided the equation is of type(c)—see Corollary6.7.
Moreover, the examples in Section3 imply that one can decide whether a given regular prefix code, or
suffix code, or infix code, or error-detecting language is maximal.

In the proof of the preceding proposition, even ifA is a DFA the automatonAT , or AT −1, might be
a �-NFA. In this case, computingCc would require to convertC to a DFA. Thus, the above algorithm
might require exponentially many steps. On the other hand, one hopes that when the given transducer is
of a certain particular type (or even fixed), the residue of a solution can be computed in polynomial time.
This possibility is explored in the next section.

7. Special cases and applications

7.1. Languages with finitely many quotients

Recall that, by Corollary6.5, the inequation(X♦L) ⊆ Xc, (∗), is equivalent to(X♦rX) ⊆ Lc. We
want therefore to be able to solve inequations of the formX♦X ⊆ R, for a given languageR ⊆ �∗ and
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unknownX. In [9], it is shown that if both the sets of left and right quotients ofRc with respect to♦ are
finite one can identify all the maximal solutions of the equationX♦X = R. The same argument can be
applied also for solving the inequationX♦X ⊆ R. Here we improve this result by showing how to identify
all the maximal solutions of our inequation when one of the quotient sets is known to be finite. Indeed,
suppose that the set of left quotients ofRc with respect to♦ is finite:P1, . . . , Pn. According to Corollary
6.11, the following method would produce all the maximal solutions of the inequationX♦X ⊆ R with
X ⊆ M:
(i) For eachi = 1, . . . , n, let T be the languageP c

i ∩ (P c
i ♦rRc)c. If T♦T is a subset ofR then add

T ∩M in the list of solutions.
(ii) Remove from the list any solutions that are proper subsets of other solutions.
It should be clear that, if the set of right quotients ofRc is finite, then we can use a similar method for
producing all the maximal solutions of our inequation. As an example, consider the insertion operation.
Recall that the right inverse of insertion is the operation of reversed dipolar deletion, and the left inverse
of insertion is deletion. Moreover,[7,8] for every regular languageF there exist finitely many languages
that can be obtained fromF by dipolar deletion, and finitely many languages that can be obtained fromF
by deletion. This implies that the sets of left and right quotients ofF with respect to insertion are finite.
Hence, the above method can be applied to solve the inequationX←− X ⊆ R with X ⊆ M whenR is
regular. For example, consider the inequation

X ⇀↽
′ {aa} ⊆ Xc.

Using the facts⇀↽′=←−r and⇀↽
′r=←−, we can verify that the set{{aa}⇀↽ W | W ⊆ �∗} consists of all

the right quotients of⇀↽
′r and is equal to the set of all subsets of{�, a, aa}. Moreover, for each such quotient

Pr , say, we can compute the set�∗ − Pr − ({aa} −→ P c
r ), which is equal to�∗ − Pr − ({aa}⇀↽′l P c

r )

using the fact⇀↽
′l=⇀↽r ′ . This process produces two maximal sets,{a, aa}c and{�, a}c, which are the

maximal solutions of the above inequation—see Corollary6.12.

7.2. Finite operations

A binary operation isfinite if its characteristic relation is finite. Finite operations can be obtained by
restricting the domain of other operations that are infinite, in general.

Example 7.1. For any positive integern, let (−→rq)n be the restriction of−→rq as follows:(w, u, v)

is in the characteristic relation of(−→rq)n if and only if it is in the characteristic relation of−→rq and
|u|�n and |v| > 0. Then dom2(−→rq)n is equal to� ∪ · · · ∪ �n. Moreover the solution set of the
inequationX(−→rq)n�+ ⊆ Xc with X ⊆ �∪ · · · ∪ �n is the set of all prefix codes whose longest word
is of length at mostn.

Example 7.2. For any positive integersn andmwith n > m, let��n,m be the restriction of�� as follows:
(w, u, v) is in the characteristic relation of��n,m if and only if it is in the characteristic relation of�� and
|u| = n andm ≥ |v| > 0. Then dom2(��n,m) is equal to� ∪ · · · ∪ �m. Moreover the solution set of the
inequationX��n,m�+ ⊆ Xc with X ⊆ �n is the set of all subsets of�n that are error-detecting for the
channel�s(m,∞).
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In the above examples, the inequationX♦L ⊆ Xc with X ⊆ M is such that dom2(♦) ⊆ L. By
Corollary6.5, such an inequation is equivalent to the equation

X♦rX = ∅ with X ⊆ M. (∗ ∗ ∗)
When the operation♦ and the setM are finite there is an algorithm to test whether(∗ ∗ ∗), hence also

(∗), has a solution of cardinalityk for some givenk ≥ 1—the operation♦ is given as input by simply
listing the elements ofC♦. The problem, however, is NP-complete.

Proposition 7.3. The following problem is NP-complete.
Input: a finite operation♦, a finite language M and a positive integer k.
Output: Y/N , depending on whether the equationX♦X = ∅ with X ⊆ M has a solution of
cardinality k.

Proof. Firstly, we note that the problem is in NP. Now suppose� is the alphabet of the problem. We shall
reduce to this problem the following NP-complete problem.
Input: a graphG and a positive integerk.
Output: Y/N, depending on whetherG has a clique ofk vertices.

Let G = (VG,EG) andk constitute an instance of the clique problem, whereVG is the set of vertices
andEG is the set of edges. SupposeVG = {1̄, . . . , m̄}, for somem�1, wherev̄ denotes the|�|-ary
representation of the integervusing symbols from�. Define the finite operation♦G whose characteristic
relation consists of all triples(�, ū, v̄) with ū, v̄ ∈ VG andū �= v̄ and(ū, v̄) is not an edge inEG. Then
the graphG has a cliqueC of k vertices if and only ifC is a solution of the equationX♦GX = ∅ with
X ⊆ VG. This follows by the definition of♦G and the fact that, for every binary operation♦ and language
S, S♦S = ∅ if and only if (s, t) /∈ dom(♦) for all sandt in S. �

7.3. Decidability of maximality

We discuss now the problem of deciding whether a code of a certain type is maximal using the ideas
developed in Proposition6.6.

The residue of a prefix codeS(see Example3.1) is�+−(S∪S −→rq �+∪S�+) and can be computed
in timeO(|A|), whenS is given by a trim DFAA. This can be done as follows. First, construct a DFA
B of sizeO(|A|) such thatL(B) = S�+. This is possible by adding inA a new stateg, which would be
the only final state ofB, and transitionsf a→ g for everya ∈ � and for every (old) final statef of g. As
L(A) is a prefix code, the automatonBwould be a DFA. Now letC be the DFA, of sizeO(|A|), obtained
fromB by making all states ofB final. Then, it follows thatL(C) = S ∪ (S −→rq �+)∪ S�+. AsC is a
DFA, we can construct the automatonA�+ ∩ Cc in timeO(|A|), whereA�+ is the two-state automaton
accepting�+. The claim follows now, asL(A�+ ∩ Cc) is the residue of S. Hence, we have shown the
following consequence of Proposition6.6.

Corollary 7.4. The following problem is decidable in linear time:
Input: a DFA A.
Output: Y/N depending on whether the languageL(A) is a maximal prefix code.
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We now turn to the problem of whether a givenfinite suffix (respectively, bifix, infix) codeS is a
maximal suffix (respectively, bifix, infix) code. As in[3], we assume that the codeS is given by listing
the words comprisingSand, therefore, the size ofS, which we denote by‖S‖, is equal to

∑
u∈S |u|. In

our discussion, thetrie TS of the finite languageSplays an important role. This is the trim DFA

({[p] | p ∈ Pref(S)}, �, [�], {[s] | s ∈ S}, P )

acceptingS[3], whereP = {[p]a→ [pa] | p ∈ Pref(S), a ∈ �, pa ∈ Pref(S)} and Pref(S) is the set
of all prefixes ofS. Note that each state[p] represents the prefixpof the input word that has been read so
far by the automaton. We shall use the following facts about tries[3] (the alphabet� is considered fixed
in our paper):
• GivenS, the trieTS is of sizeO(‖S‖) and can be constructed in timeO(‖S‖).
• GivenS, one can use the trieTS to construct a trim DFADS , of sizeO(‖S‖), in timeO(‖S‖) accepting

the language�∗S. The DFADS is called the dictionary-matching automaton ofS.
First supposeS is a finite suffix code. Then the setS′ consisting of the reverses of the words inS is a
prefix code. Moreover,S is a maximal suffix code if and only ifS′ is a maximal prefix code. Hence, to
test whetherSis a maximal suffix code, one constructs the trieTS′ and tests whetherL(TS′) is a maximal
prefix code using Corollary7.4. Now suppose thatSis abifix code—this is a code that is both prefix and
suffix. By [1], S is a maximal bifix code if and only if it is a maximal prefix code and a maximal suffix
code. Hence, the following holds.

Corollary 7.5. The following problem is decidable in linear time:
Input: a finite language S.
Output: Y/N depending on whether S is a maximal suffix, or bifix, code.

Consider now the case whereS is a finite infix code. The residue ofS is

(S ∪ S ⇀↽ �+ ∪ S ←−′ �+)c
= (S ∪ S ⇀↽ �+ ∪ S ∪ �+ ←− S)c

= (S ⇀↽ �∗ ∪ �∗ ←− S)c

= (Fact(S) ∪ �∗S�∗)c,
where Fact(S) is the set of all factors ofS. GivenS, one can construct the factor automatonFS of S that
accepts the language Fact(S). This automaton is a minimal DFA of sizeO(‖S‖) and can be constructed
in timeO(‖S‖) [3]. We also need to construct a DFAES accepting the language�∗S�∗. For this, consider
the dictionary-matching automatonDS . This has the same states as the trieTS does, the same final states,
and includes all the productions ofTS . In addition, for each state[p] of DS and for each symbola ∈ �,
if there is no production of the form[p]a → [pa] in TS then we add inDS the production[p]a → [u]
whereu is the longest suffix ofpa that is also a prefix ofS (hence,[u] would be a valid state ofTS and
DS). To obtain the desired DFAES we modify slightly the construction ofDS from TS as follows:
• Add the new productions[p]a→ [u] as specified above, unless[p] is a final state.
• Add an extra final stateG in ES and the productionsGa → G, for all a ∈ �. Moreover, for every

(existing) final state[w] and for every symbola ∈ �, add the production[w]a→ G.
We argue now thatL(ES) = �∗S�∗. First consider any wordz in �∗S�∗. This word can be written as
xywith x ∈ �∗S. Thus, there is a successful computation of the automatonDS on xwhich involves the
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sequence of states[u0], [u1], . . . , [un], say, whereu0 = �. Let [uk] be the first occurrence of a final state
of DS in the above sequence of states, and let� be the computation ofDS corresponding to the sequence
[u0], . . . , [uk]. In this computation the automaton reads a prefixx1 of x and, thereforex is of the form
x1x2. By the construction ofES , � must be a computation ofES as well and, as[uk] is a final state, the
word x2y will be accepted byES when[uk] is used as the start state. Hence,x1x2y would be accepted
byES when[�] is used as the start state.

Now consider a wordz in L(ES). There is a computation ofES that involves a sequence of states
q0, q1, . . . , qn with q0 = [�]. Moreover, there is a unique stateqi that is a final state ofDS such that all
statesq0, . . . , qi are different fromG and, if i < n, all statesqi+1, . . . , qn are equal toG. Then in the
computation�, say, that corresponds to the statesq0, . . . , qi the automaton reads a prefixx1 of z. But �
is also a computation ofDS which implies thatx1 ∈ �∗S and, therefore,z ∈ �∗S�∗ as required.

We return now to the original question of computing the residue ofS. According to the above, the
residue ofSis the language accepted by the automaton(FS &ES)

c, which is of sizeO(‖S‖2). Hence, we
have shown the following.

Corollary 7.6. The following problem is decidable in quadratic time:
Input: a finite language S.
Output: Y/N , depending on whether S is a maximal infix code.

We conclude the paper with the following consequence of Corollary6.7.

Corollary 7.7. The following problem is decidable in timeO(‖C‖ log‖C‖).
Input: Fixed-length code C that is error-detecting for the channel�s(1,∞).
Output:Y/N ,dependingonwhetherC is amaximal subset of�nwith theproperty of beingerror-detecting
for the channel�s(1,∞), where n is the length of the words in C.

Proof. By Example4.4, the above problem is equivalent to deciding whether the solutionC of

X��� ⊆ Xc with X ⊆ �n

is maximal, and by Lemma4.6and Remark4.7, the residue of the solutionC is equal to�n−C��(�0∪�).
Moreover, asC��(�0∪�) ⊆ �n it follows thatC is maximal if and only if the cardinality ofC��(�0∪�)
is qn, whereq = |�|.

Now note that, ifC is maximal, then it must be the case that|C|+ |C|(q−1)n�qn. This follows from
the fact thatC��(�0 ∪ �) is equal toC ∪ (

⋃
w∈C w���) and the cardinality of eachw��� is (q − 1)n.

This implies that, if|C|(1+ (q − 1)n) < qn, thenC is not maximal. Based on these observations, we
have the following decision procedure.
(i) Let n be the length of the words inC and letq be the cardinality of the alphabet.

(ii) If |C|(1+ (q − 1)n) < qn then outputN and quit.
(iii) Initialize a set of wordsStoC and a counter to|C|.
(iv) For each wordw inC, compute the(q−1)nwords ofw��� and insert them inS. Moreover, increment

the counter by one each time anewword is inserted inS. If the counter becomesqn outputY and
quit.

(v) OutputN.
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Obviously, the worst case time complexity of the algorithm is dominated by steps 3 and 4. We can
implementSas a trieT, which is initialized toTC . The cost of inserting a word of lengthn in a trie is
�(n). Hence, the cost of steps 3 and 4 is

�(‖C‖)+�(|C| × (q − 1)n× n),

which is equivalent to�(‖C‖(q − 1)n) using the fact that‖C‖ = n|C|. Also, in these steps we have that
qn� |C|(1+ (q − 1)n), which implies

qn� |C|qn⇒ qn−1�‖C‖ ⇒ n− 1� logq ‖C‖
and the claim of the corollary is established.�
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